

Introduction:

Eric Hegger: Consultant at NovaCropControl

- Graduated from the HAS University in 'Horticulture and Business management'
- 5 years experience in Greenhouse cultivation
- Now working for 3 years at NovaCropControl
- Email: E.hegger@novacropcontrol.nl

History NovaCropControl:

NovaCropControl

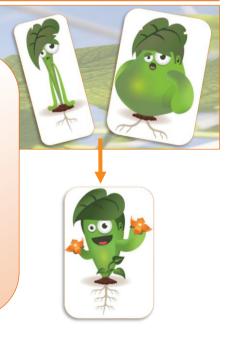
Introduction:

NovaCropControl

Subjects Session 1: Nutrient balance and Factors that Why Plant sap Mobility of the interactions influence mineral Measurements? elements in the plant uptake Session 2: 1111.0 Nutrition and Research on Interpreting Using plant health analyses bemesting-online plant health

Plant sap in which crops?

NovaCropControl

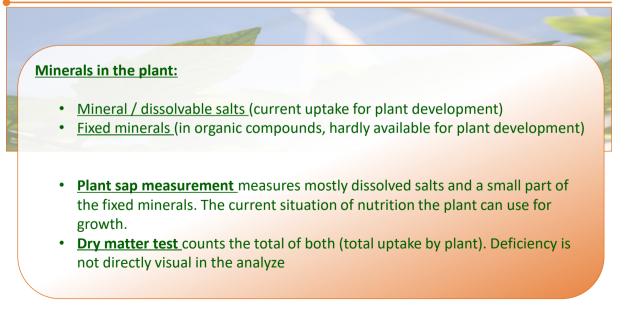


The benefits of Plant Sap measurements?

NovaCropControl

- Manage nutriënt uptake
- Improve fertilizer efficiency
- Avoid nutrient deficiencies or toxicities
- Improve plant health and vitality
- Better leaf and fruit quality
- Improve fruit taste

<u>Cost saving through optimum plant growth / health /</u> <u>fruit quality</u>



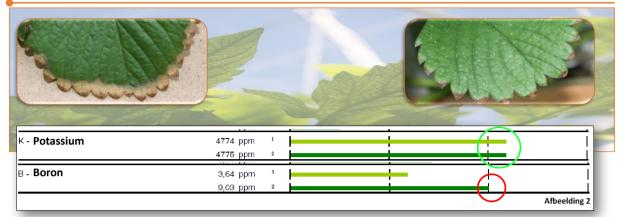
Which nutrients?

<u>Ev</u>	ery sample: 21 parameter.																		
0	Total Sugars																		
0	EC																æ		
0	рН																		
0	Calcium																		
0	Potassium																		
0	Magnesium																		
0	Sodium	E Nova	CropControl																
0	Nitrogen (Nitrate, Ammonium, Total Nitrogen)	postbus 22 www.	218 - 5001 CE - Tilburg novacropcontrol.nl				_												
0	Chloride	Part sip sample Name: Address	* 201706011851 * 201706011852 NovaCropControl Petitiws 2218		Sample date: Location/plot: Cultivation:	31-5-3017 2017 90 Proef 23 Tomast de	NewGraph		Control	Analysis report Name: Address:	Demoberth Plantuspol	ψf taat 1	ot tuin 1 2018	Louis	uniples: Tuin 1				
0	Sulphur	Remarks	5005 CE Tithung		Crop: Plant part	Temato *Leuf troung	Gasthulast 5063 PB C The Nether T: +21 00 2	isterwijk Sands		Report no.: Sample date: Date of Analysis:	83020580 27-8-2058 25-9-2058			Cultive Crept	dian: Tomad Tomato	tuin 1 2018			
0	Phosphorus	Mineral		Current level		_	1.000.00	wacropcontrol.nl acropcontrol.nl		Data of Report	80-10-201	·							
	Silica	Total Sugars	5 5	2,5 1,8 5,5	-		Analyzes in Sample Dat 27-8-2028		- 5 -	No.0 K	-	Warre nut E/Ca Mg	1911 (1000))) 9 901 (1000)		HCE0 P	n 112	Micro neb Mic De 1835 20.7	Anno (anno)(. Ca A . D Z L Z	-
0		EC.	m5/on m5/on	5,2 × 12,2 × 17,9 ×				na 10-3,1 mi/on*	u	U LN R	- 43 - 2	2 1.01 2	1 41 1	и а	10 U.	M 20	164 168	663 1,2	U
0	Iron	K - Potessium	ppm ppm	3561 5873	-	-	Torryle Ter	ation water *		е ма т	80 G	1/0 14	5 500		9000			• • •	~1
0	Manganese	Ca - Calcium	ppm ppm	2158		-	27-8-2018	201809054270	0		- 65 - 7	2 1.01 2		и в	10 U.	M 20	154 15.0	963 L2	43
0	Zinc	Mg - Magnesium	ppm ppm	0.90 F		-	13-8-2018 6-8-2018	201809254018 201809254017	0 10		0	10 1.06 A 14 1.06 Z 12 1.40 Z	8 0,8 11 9 0,4 11 4 0,5 11	5 6 5 52	17 13 1 17 13 1 16 14 1	10 402 10 402 15 472	41 143 47 143 37 140	40 00 H0 U	18 14
		Na - Sodium	bbu bbu	24 40	-	=	30.7.2018 23.7.2018 36.7.2018	201809254056 201809254015 201809254016	2.8 2.8 2.9	7 0.09 K 0 0.09 Z 3 0.04 S	14	0 1.17 2 0 1.07 2 15 0.00 2	9 6,7 H 9 6,7 H	0 0 0 10	43 0A 1 Al 02 1 27 03 0	л н. в н. 7 1.1	10 10 10 10 10 10	411 0.8 410 L1 319 413	2
0	Boron	NHI - Ammonium NO3 - Nitrote	ppm ppm	59 47		-	9-7-2018	20.89254013	1.0	5 6,29 2	1,4 0	2 1.0 2	3 45 1	0 D	2.8 0.2	A 27.9	10.0 10.2	ні ц	U2
0	Copper	NO3 - Nitrate	ppm ppm	458 1 2517 7			Method MOD	Competing and the second	reference EC of 3.8 c	ilim.				The	multi have been prod	col ander the rea	perchéty af general e	suger 21.0. Tenners	1.00
0	Molybdenum	N - Total Nitragen	ppm ppm ppm	568 ×	-		1400	0 NHLNILLING 0 K 0 pH									12-	20	
	Aluminium	C - Chloride	ppm ppm	863 1 1651 1			Accediation d 10 Repairies Due to unitation				ny fan langar Danis B	urfast a ratheds fit	12 and 101204.					Bull 125	
0	Aluminium	S - Sulfur	ppm ppm	1270 ¹ 1722 ²	<u> </u>	-	Con general to	into be reproduced in the er-		has and/or the specific	ations of the analysi	nethods will be send	un trapació.						74
$\langle \rangle$		P - Phesphorus	ppm ppm	475 285		-	_									/			40
		S-Sia	ppm	29,5															

Difference plant sap and dry matter test

NovaCropControl

Difference plant sap and dry matter test Plantsap: N deficiency in a earlier stage visual. 2/3 weeks later visual in the dry matter. Dry matter test: In a dry matter test it takes longer to determinate lower numbers Dry matter test: In a dry matter test it visual in the dry matter test in a dry matter test it visual in the dry matter test is used to determinate lower numbers


11

Find the cause of a deficiency

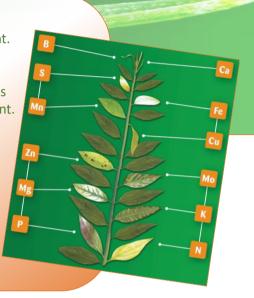
Boron too high or Potassium deficiency?

"Proper sampling is essential"!

NovaCropControl

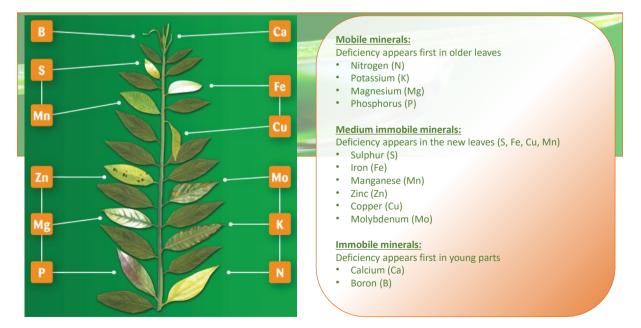
Use the right materials

Don'ts!!!

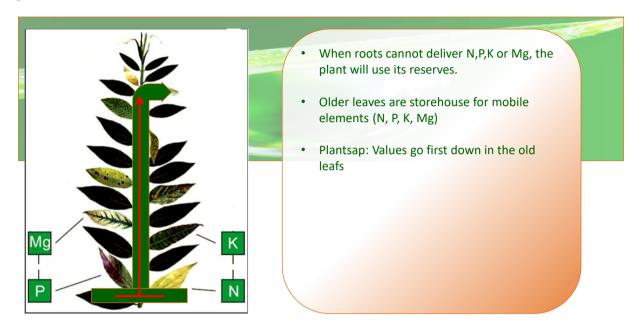


Mobility of elements

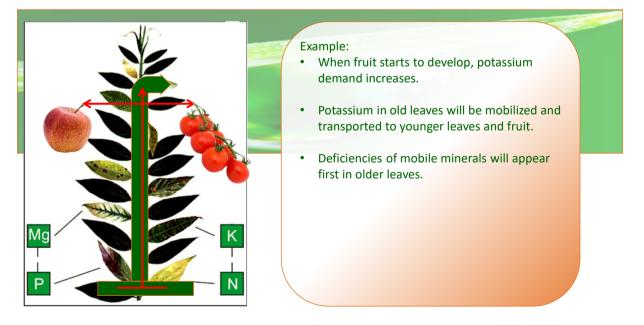
NovaCropControl


Mobility of elements:

- Recognize a deficiency based on position in the plant.
- Sampling young and old leaves separately for best
- insight into what is going on in the plant.Each deficiency looks different but some deficiencies
- are similar. (Mg and Mn). Look at position in the plant.

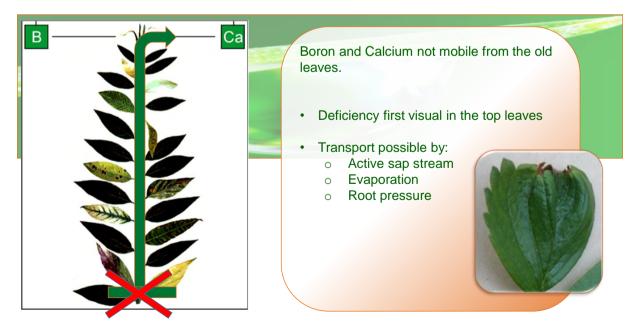

19

Mineral mobility in the plant



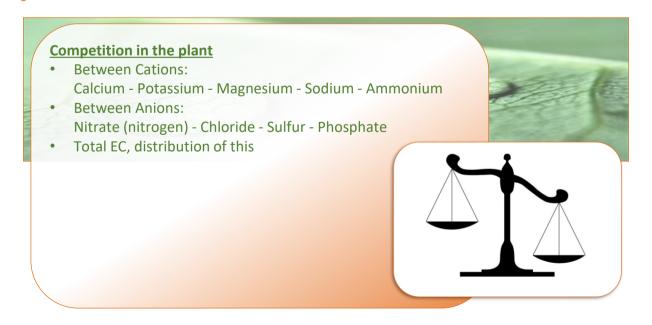
Mineral mobility in the plant

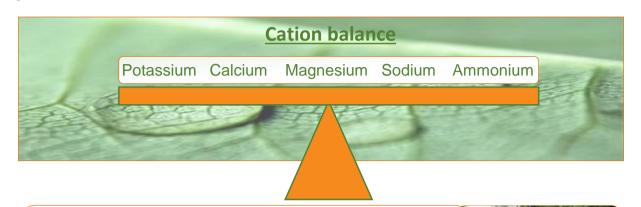
Mineral mobility in the plant



Mineral mobility in the plant

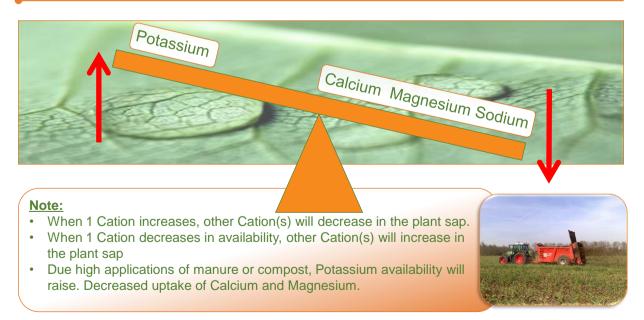
NovaCropControl


Mineral mobility in the plant



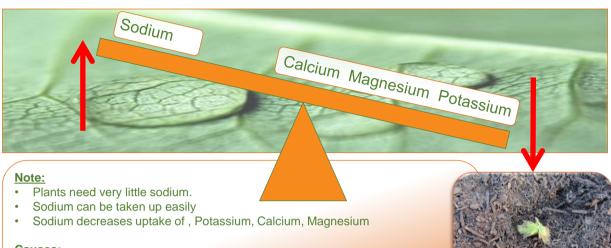
NovaCropControl

Antagonistic interactions Cations

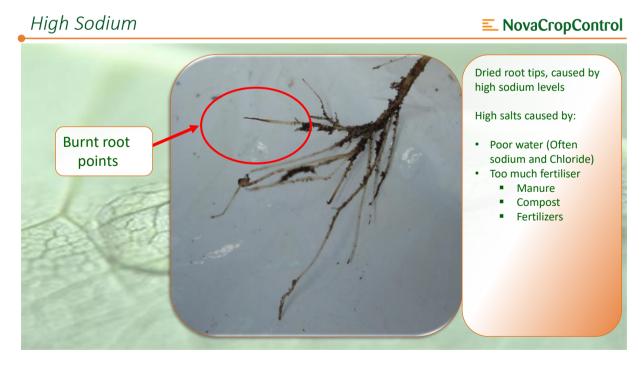

Note:

- Sufficient in the soil/substrate no guarantee for balanced uptake
- Ratio important for the uptake
- · One Cation too high presented in plant sap, other Cation(s) deficient

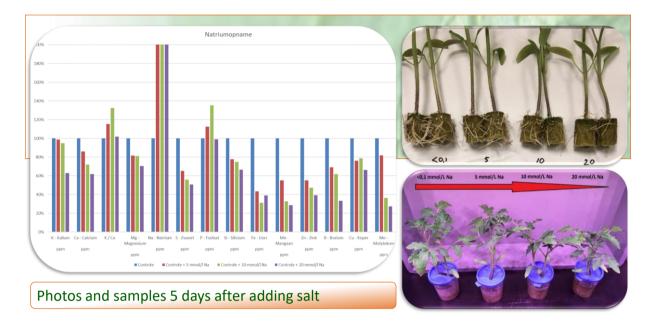
27


Antagonistic interactions Cations

NovaCropControl


Antagonistic interactions Cations

NovaCropControl


Causes:

- Water quality
- Ballast with fertilizers (Fe 3% (50 μ mol = \pm 0.5 mmol Na, replace it for Fe6%
- City water (sometimes 0,6 mmol/l)



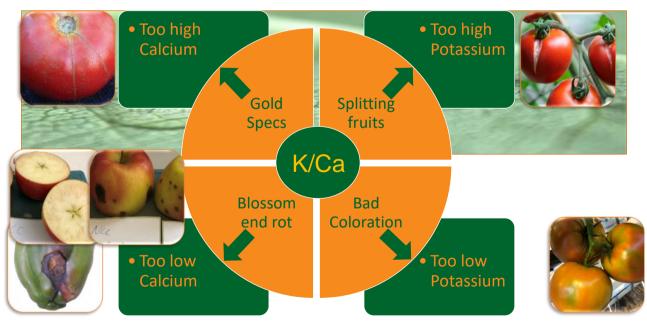
Competetition Cations (Sodium test)

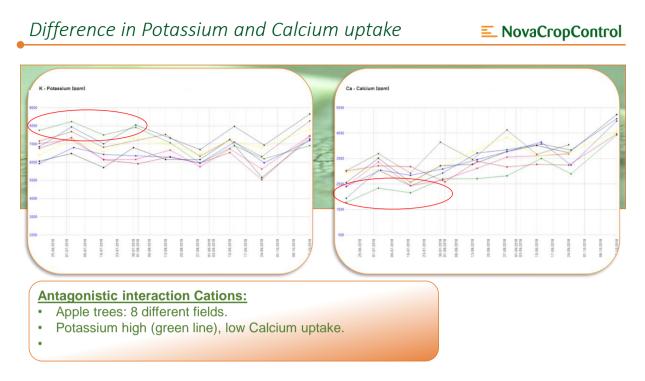
NovaCropControl

31

Influence Sodium on Calcium uptake

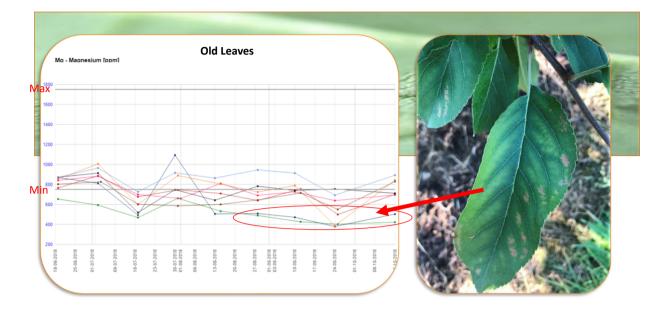
Sodium goes too high and this has big impact on the Calcium uptake!


Potassium and Calcium ratio


NovaCropControl

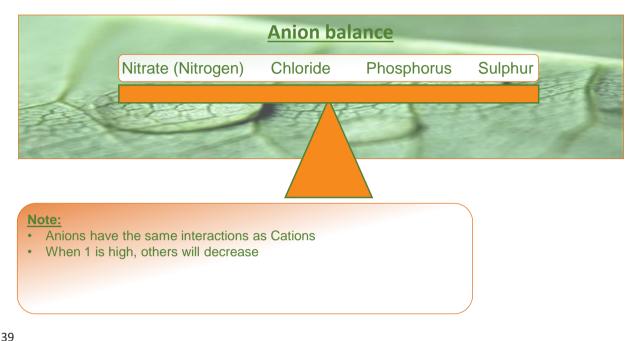
33

Potassium and Calcium ratio


35

K/Ca ratio differents between the fields

Target Values give a very good indication

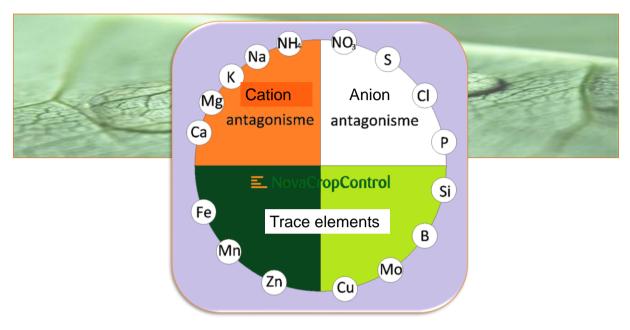


K/Ca ratio important for Potato

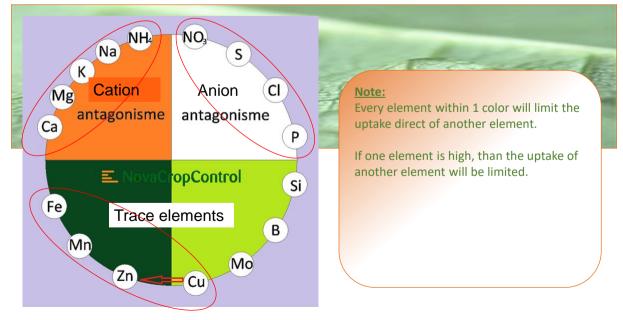
Antagonistic interactions Anions

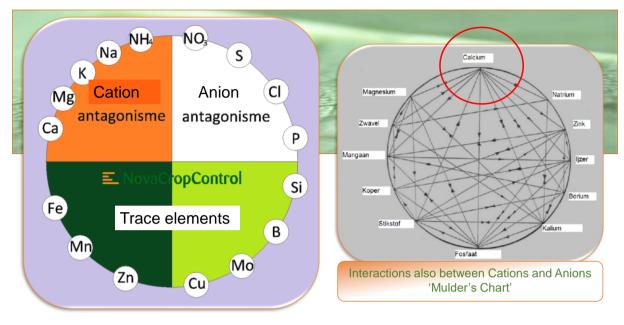


59

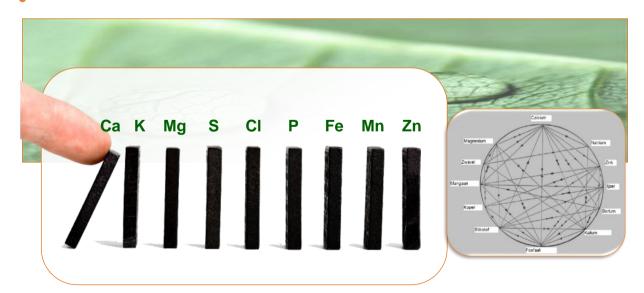

Lowering Nitrate with Other Anions

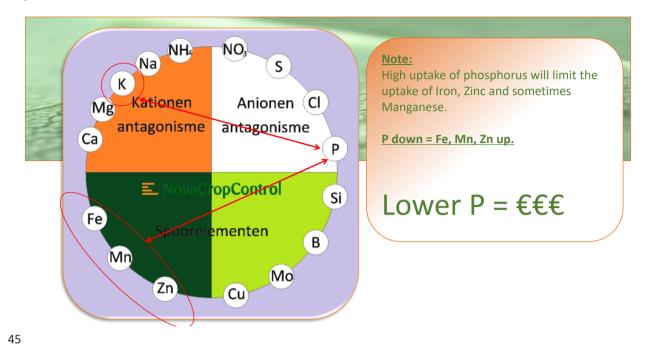
NovaCropControl


- Lower Nitrate uptake: In fertilizer recipe higher S, CI (and P) with the same EC result in a decrease of NO3.
- Higher Sulphur helps Nitrate conversion to Proteins
- High Chloride also decreases the uptake of Phosphorus.


NovaCropControl

41


Antagonistic interactions

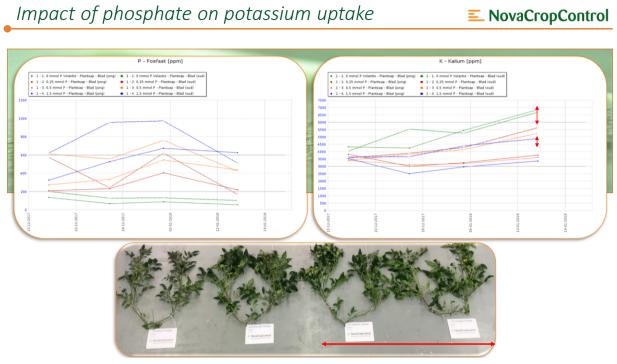


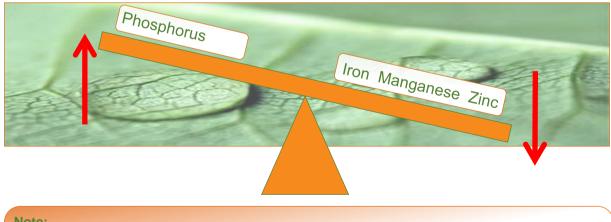
43

The influence of one element on the rest

NovaCropControl

Impact of phosphate on potassium uptake




Note:

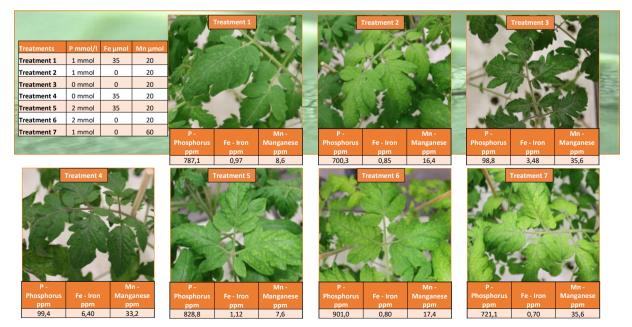
- Idea: Better coloration of tomatoes in the winter
- Ascending P fertilization, equal K fertilization
- 2 varieties: Volantis and Romindo

EC	рH																	
	μη	NH4	K	Na	Ca	Mg	NO3	Cl	S04	HCO3	Ρ	Si	Fe	Mn	Zn	В	Cu	Мо
Analyse																		
Streefwaarde																		
Basis v.o. 3	,0	0,00	6,00	x 8	8,50	3,50	17,50	4,00	3,50	х	1,50		45	15	10	50	1,50	1,00

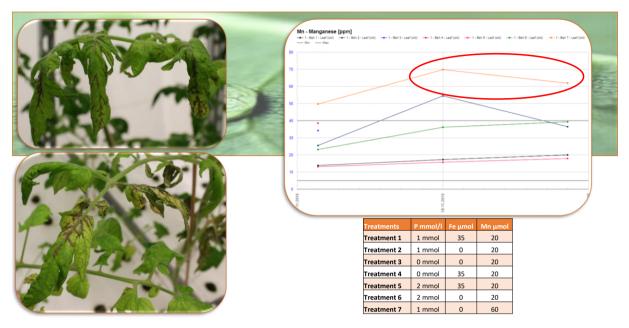
Phosphorus blocks the uptake of trace elements **E NovaCropControl**

- Note:
- Phosphate is important for sugar transport and healthy roots
- But too high phosphate inhibits the uptake of Iron, Manganese and Zinc.

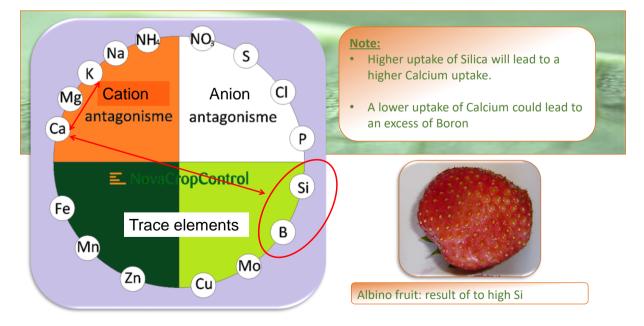
Influence of P and Mn on the Fe uptake



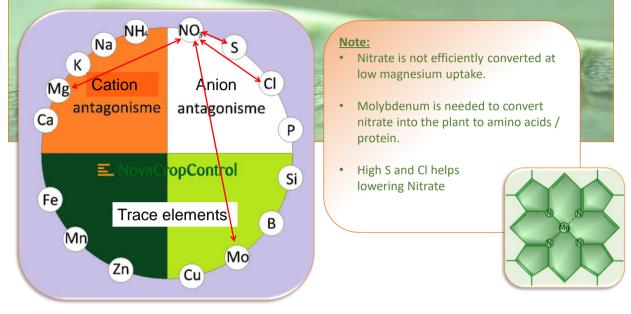
Treatments	Phosphorus mmol/l	Iron µmol	Manganese µmol		
Treatment 1	1 mmol	35	20		
Treatment 2	1 mmol	0	20		
Treatment 3	0 mmol	0	20		
Treatment 4	0 mmol	35	20		
Treatment 5	2 mmol	35	20		
Treatment 6	2 mmol	0	20		
Treatment 7	1 mmol	0	60		


Influence of P and Mn on the Fe uptake

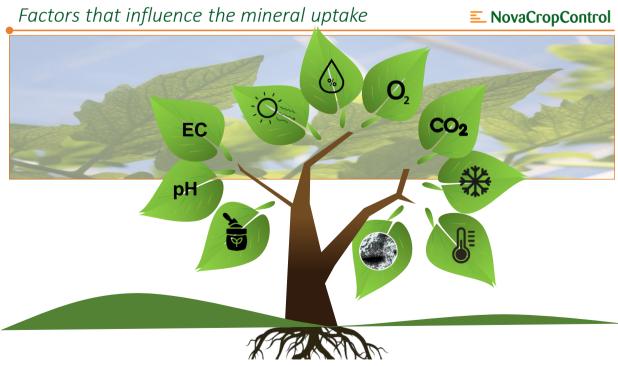
NovaCropControl



Influence of P and Mn on the Fe uptake

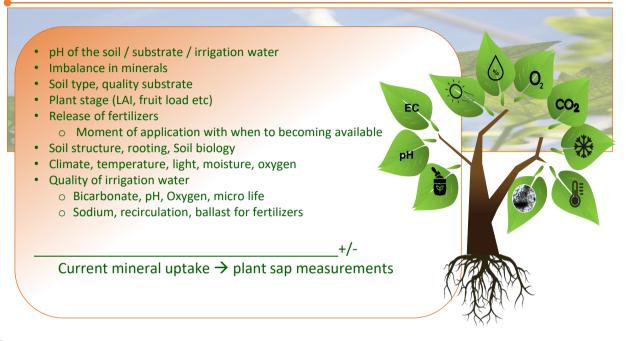

NovaCropControl

Antagonistic interactions



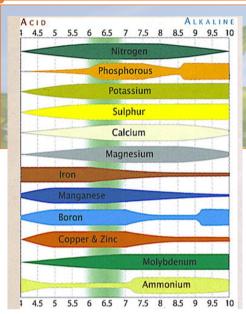
Functions of minerals

Element	Advantage	Disadvantage	Element	Advantage	Disadvantage		
Sugars	Vital crop, efficient photosynthesis, increased natural resistance and shelf life.	Too high concentrations indicate that the plant is not "working". This will cost production.	5	Efficient NO3 conversion, healthy growth. Important for protein production.	Acid soil conditions, pH will drop and an extreme uptake of Mn, even till toxic concentrations.		
EC	Sufficient dissolved minerals are needed for plant growth. Keep in mind: Which minerals are building the	A high EC will result in leaf burning; low EC values will cause slow growth.	CI	Healthy growth, efficient NO3 conversion.	Competition with NO3 in uptake, can lead to N deficiency.		
pН	EC? The "good", or the "bad" ones? In the low pH range, micronutrients	Low pH will limit the uptake of	Fe	Green leaf colour, without spots, avoiding yellow plant heads.	High Fe results in lower Mn and Zn uptake.		
	and phosphorus are better available.	macronutrients.	Mn	Green leaf colour, without spots, low fungal susceptibility	High Mn results in lower Zn and Fe uptake. High Mn = calyx burning and		
N	Growth, leaf and stem mass, vegetative crop stage.	Too vegetative crops, or not developing to the reproductive stage. High Nitrate- Nitrogen causes susceptibility for: Powdery mildew, botrytis, aphids, spider mite, thrips.	Zn	Green leaf colour, without spots, prevents leaf burning in illuminated cultivations.	fungi growth in the end. High Zn results in lower Mn and Fe uptake.		
P	A good root system, fertile flowers. Effect on fruit colour, producing firm	Micronutrients are being limited in uptake, first Fe, then Zn and then Mn. Suppresses Ca in uptake = blossom end	В	Stimulates Ca uptake, ensures firm fruit connection to the vine, limits yellow calyxes. Improved fruiting.	Toxic for plants, first leaf tip discolouration, followed by plant die off.		
	fruits. Stimulating growth. Sufficient K will avoid leaf burning in illuminated cultivations.		Cu	Less vine breaking. Limits fungal susceptibility from inside the plant, e.g. calyx fungi.	Results in lower Fe and Zn uptake, produces firm crops, slower growth.		
Ca	Avoiding blossom end rot, firm fruit skin/cells. Efficient NO3 conversion, healthy	Relatively few disadvantages, Mg and K are less available for uptake. High Mg will result in lower K and Ca	Si	Stimulates Ca uptake, firm leaves. Decreases powdery mildew, botrytis, yellow calyxes and calyx fungi.	Up to now no disadvantages in tomato, in soft fruits K uptake will be lower, caused by high Ca uptake.		
	growth. Important for chlorophyll production.	uptake.	Мо	Necessary for enzyme processes for NO3 conversion, healthy growth.	Unknown, can be toxic when concentrations increase too much.		


NovaCropControl

Factors that influence the mineral uptake

E NovaCropControl

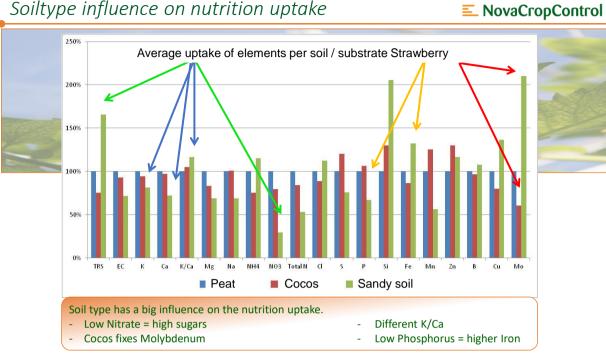

57

Acidity influence on nutrition uptake soil

iron, copper, High pH decreases uptake of: manganese, zinc, cobalt P (above 7 fixed) and nickel Trace elements (Fe, Mn, Zn, Cu) • molybdenum Mo higher uptake Degree of availability increases Low pH: decreases uptake of: phosphorus Ρ Mo nitrogen, sulfur, Cations K, Ca, Mg boron and N, S, B selenium Aluminium higher uptake (indication in plant sap) potassium, calcium and magnesium aluminum 6.5 8.5 5.0 5.5 6.0 7.5 8.0 9.0 4.5 7.0 pH

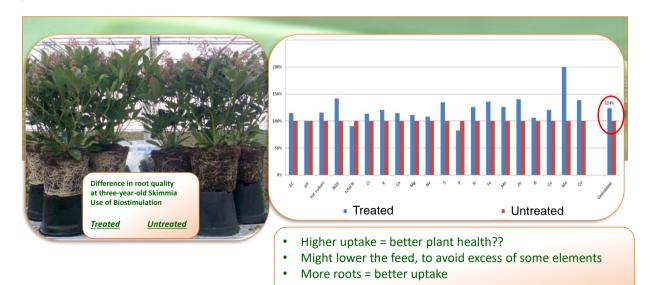
Acidity influence on nutrition uptake soil

NovaCropControl

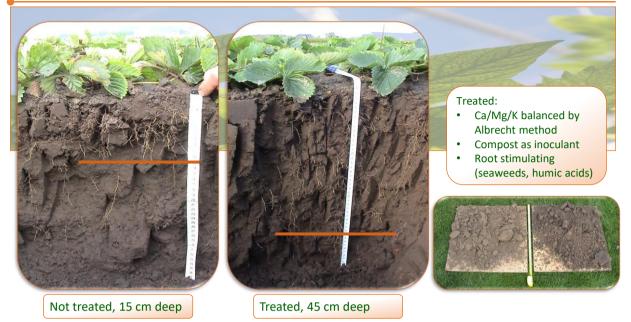


Another picture but now shown separately

Manganese uptake vs pH


Higher dosage will not always result in a higher uptake pH of the soil or irrigation water Stagnation uptake of trace elements • • Acid conditions, root development problems Example of the effect of pH on Manganese. Strawberry in glasshouse on same substrate High supply Mn, lower uptake by the high pH . Manganese uptake Elsanta Strawberry of the irrigation water 25 20 peld gnoi ni nm mqq 10 Manganese pН Drip water Drip water **Grower A** 27 µmol 6.0 41 42 38 5.2 **Grower B** 15 µmol -Teler B (gem 15 μmol; pH 5.2) Teler A (gem 27 µmol; pH 6.0)

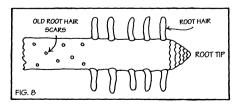
Soiltype influence on nutrition uptake


Soillife influence on the Nutrient uptake

E NovaCropControl

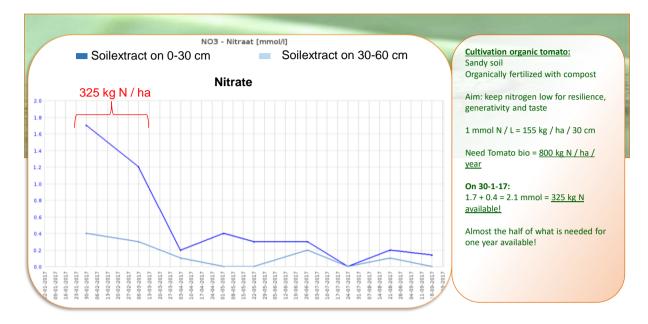
Soil life influence on the Nutrient uptake

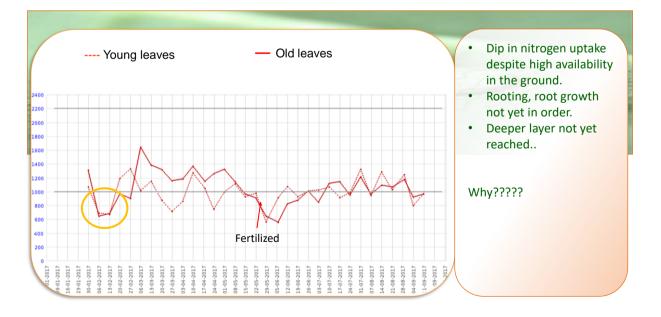
NovaCropControl


Quality of root hairs

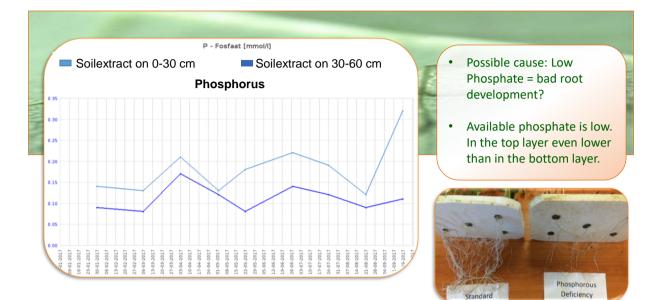
- Root hairs are located at the end of the roots
- Root hairs "just" live 10 up to 12 days
- Nutrients in the soil solution can only be taken up by these hair roots
- Root hairs are important for Calcium uptake
- Healthy root development: Structure, biology, moisture, oxygen

Nutrient uptake as a comparison: Beer from a straw (bad rooting) or from the mug (good rooting).




Root growth influence on nutrition uptake

NovaCropControl

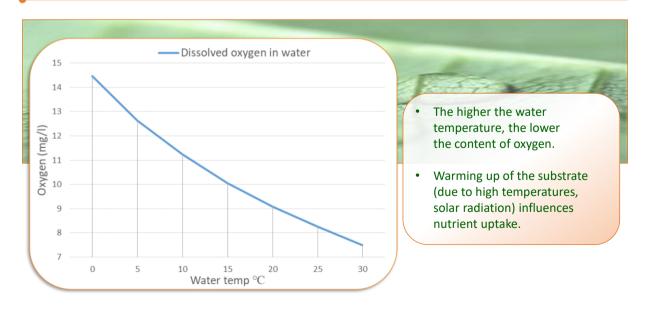

Root growth influence on nutrition uptake

NovaCropControl

Root growth influence on nutrition uptake

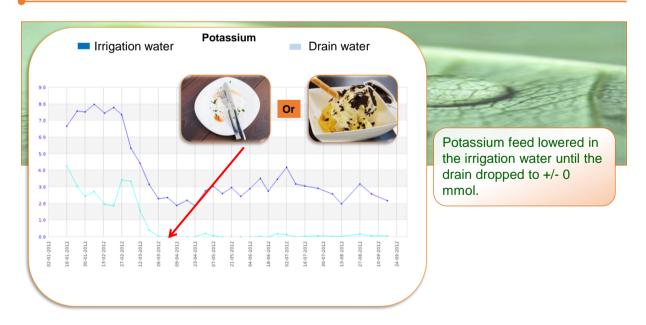
NovaCropControl

Oxygen influence on nutrition uptake

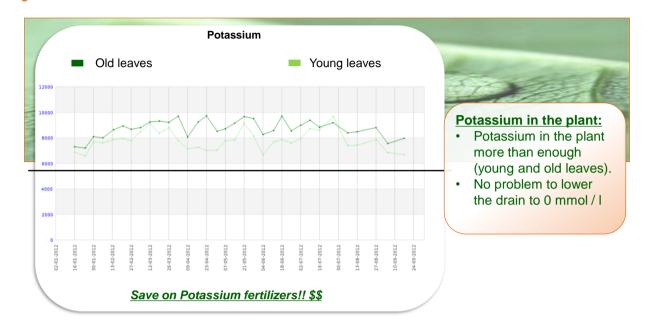

34

Oxygen influence on nutrition uptake

Oxygen influence on nutrition uptake



Have you eaten enough or still hungry??

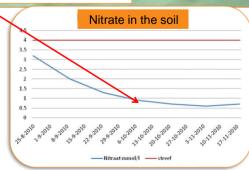


Why measure in the plant?

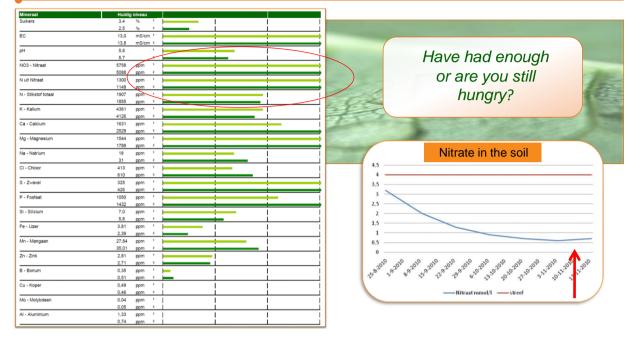
Why measure in the plant?

NovaCropControl

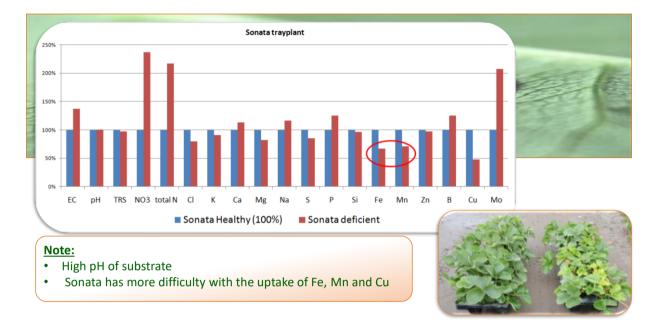
73


Soil vs Plant

ms/cm ms/cm mmol/ water tract mol/ water tract tract	Datum	Omschrijving	Monsternr	EC	EC[c]	рН	NH4*	K⁺	Na⁺	Ca ²⁺	Mg ²⁺	Si	NO ₃	CI.	SO42.	HCO ₂	* P.,.	Fe	Mn	Zn	В	Cu	Мо
00-00-2010 oksolveen 1312072 0.7 0.8 5.4 0.2 1.8 0.8 0.05 2.0 0.1 1.9 0.1 0.9 0.1 1.9 0.1 0.9 0.1 1.9 0.1 0.9 0.1 1.9 0.1 1.9 0.1 1.9 0.1 1.9 0.1 0.9 0.1 1.9 0.1 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.5 0.1 0.5 0.7 0.5 1.1 0.0 0.7 0.2 2.8 0.1 0.4 0.9 0.4 0.9 0.4 0.9 0.9 0.		, ,		mS	/cm		,				-		-		,					umol/l v	vatere	xtract	
Observe Value 1312075 0.7 0.8 5.3 -0.1 1.1 0.7 2.0 0.8 0.2 0.4 0.7 1.5 col. 1.0 0.7 0.8 0.8 0.2 0.4 0.7 1.5 col. 1.0 0.7 0.8 0.2 0.4 0.7 1.5 col. 1.0 0.7 0.8 0.2 0.4 0.7 1.5 col. 1.0 0.7 0.8 0.2 0.4 0.7 0.5 0.1 0.8 0.2 1.3 0.2 1.4 0.7 0.5 0.1 0.8 0.2 1.4 0.7 0.5 0.1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 <th0.4< th=""> 0.4 0.4</th0.4<>	25-08-2010	okos/veen aardbei	1310075	0.4	0.8	5.4	0.1	2.3	0.3	1.3	0.6	<0.05	3.2	0.2	1.1	<0.1	0.51	7.4	0.7	1.3	<4	0.27	<0.1
23-09-2010 ventkokos Aardbel 1314355 0.6 0.8 5.5 0.1 1.0 0.5 1.6 0.7 -0.5 1.3 0.2 1.6 -0.1 0.4 1.1.6 0.6 0.7 -0.2 0.7 -0.2 1.6 -0.1 0.4 1.1.6 0.6 1.9 -4 0.23 -0.0 0.7 0.2 2.6 -0.1 0.4 1.1.6 0.6 1.9 -4 0.23 -0.0 0.7 0.2 2.8 -0.1 0.4 9.7 1.3 2.4 -4 0.17 -0.2 2.8 -0.1 0.46 9.7 1.3 2.4 -4 0.17 -0.0 2.1 -0.1 0.43 11.5 1.3 1.9 -4 0.23 -0.0 -0.0 -1.6 -1.0 0.43 11.5 1.3 1.9 -4 0.20 -0.0 -0.0 -1.1 0.43 1.5 1.3 1.9 -4 0.20 -0.0 -0.0 -1.1 0.5 0.9 2.9 1.3 -0.0 0.4 1.1 0.0 0.5 0.9 <	09-09-2010	okos/veen	1312072	0.7	0.8	5.4	0.2	1.8	0.5	1.9	0.8	<0.05	2.0	0.1	1.9	<0.1	0.76	12.3	1.8	3.6	7	0.27	<0.1
07-10-2010 vem/hokos 1318843 0.9 0.8 5.5 0.1 0.5 0.7 2.5 1.1 <0.05 0.7 0.2 2.8 <0.1 0.46 9.7 1.3 2.4 <0.17 <0.07 <0.2 2.8 <0.1 0.46 9.7 1.3 2.4 <0.17 <0.07 <0.2 2.8 <0.1 0.46 9.7 1.3 2.4 <0.17 <0.07 <0.2 2.8 <0.1 0.46 9.7 1.3 2.4 <0.17 <0.07 <0.2 2.8 <0.1 0.43 11.5 1.3 1.9 <4 0.20 <0.07 <0.2 3.8 <0.2 3.0 0.5 0.9 0.2 3.1 <0.1 0.43 1.5 1.3 1.9 <4 0.20 <0.0 0.08 5.2 0.1 0.5 0.9 2.9 1.3 <0.05 0.6 0.2 3.6 <0.1 0.28 1.0 1.0 0.7 <4 0.5 <0.0 <td>09-09-2010</td> <td>Vater put</td> <td>1312075</td> <td>0.7</td> <td>0.8</td> <td>5.3</td> <td><0.1</td> <td>1.1</td> <td>0.7</td> <td>2.0</td> <td>0.8</td> <td>0.20</td> <td>2.4</td> <td>0.7</td> <td>1.5</td> <td><0.1</td> <td><0.05</td> <td>2.4</td> <td>10.6</td> <td>4.3</td> <td><4</td> <td>0.27</td> <td><0.1</td>	09-09-2010	Vater put	1312075	0.7	0.8	5.3	<0.1	1.1	0.7	2.0	0.8	0.20	2.4	0.7	1.5	<0.1	<0.05	2.4	10.6	4.3	<4	0.27	<0.1
21-10-2010 Kokosi /veen Aardbei 1319900 0.9 0.8 4.9 0.2 0.5 0.8 2.8 1.2 <0.05	23-09-2010	/een/kokos Aardbei	1314355	0.6	0.8	5.5	0.1	1.0	0.5	1.6	0.7	<0.05	1.3	0.2	1.6	<0.1	0.43	11.6	0.6	1.9	<4	0.23	<0.1
04-11-2010 Kokos/Veen 1322345 0.9 0.8 5.1 0.1 0.5 0.9 2.9 1.3 <0.05 0.6 0.2 3.6 <0.1 0.7 1.7 <4 0.15 <0.9 18-11-2010 Kokos/Veen Aardbei 1324519 0.9 0.8 5.2 0.1 0.5 0.8 3.0 1.2 0.05 0.1 0.32 11.0 1.2 2.0 <4	07-10-2010	/een/kokos	1316843	0.9	0.8	5.5	0.1	0.5	0.7	2.5	1.1	<0.05	0.7	0.2	2.8	<0.1	0.46	9.7	1.3	2.4	<4	0.17	<0.1
18-11-2010 Kokosi Veen Aardbei 1324519 0.9 0.8 5.2 0.1 0.5 0.8 3.0 1.2 <0.05 0.7 0.2 3.5 <0.1 0.32 11.0 1.2 2.0 <4 0.10 <0.	21-10-2010	(okos/ Veen Aardbei	1319900	0.9	0.8	4.9	0.2	0.5	0.8	2.8	1.2	<0.05	0.9	0.2	3.1	<0.1	0.43	11.5	1.3	1.9	<4	0.20	<0.1
	04-11-2010	okos/veen	1322345	0.9	0.8	5.1	0.1	0.5	0.9	2.9	1.3	<0.05	0.6	0.2	3.6	<0.1	0.28	10.1	0.7	1.7	<4	0.15	<0.1
Streetwaarden Aardbel, veensubstraat 0.7 0.8 5.9 0.4 1.9 1.7 0.7 4.0 1.1 0.34 9.1 5.7 6.9 5 0.80	18-11-2010	Kokos/ Veen Aardbei	1324519	0.9	0.8	5.2	0.1	0.5	0.8	3.0	1.2	<0.05	0.7	0.2	3.5	<0.1	0.32	11.0	1.2	2.0	<4	0.10	<0.1
	Streefwaard	en Aardbel, veensubstra	at	0.7	0.8	5.9	0.4	1.9		1.7	0.7		4.0		1.1		0.34	9.1	5.7	6.9	5	0.80	

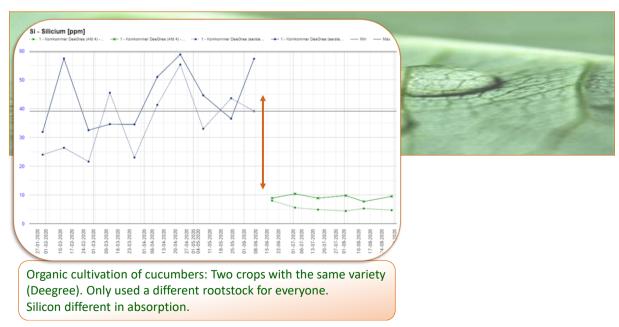

Relationship between available nitrogen in soil and plant uptake in strawberry:

- Planted on the 25th of August
- Nitrate in the soil drops from 3.2 to 0.7
- Desired nitrate content in the soil 3.5 to 4
- The soil provides exactly what the plant needs


Soil vs Plant

NovaCropControl

Varieties differ in uptake from each other

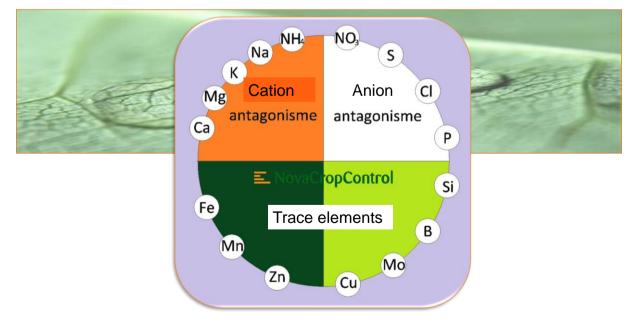


Varieties differ in uptake from each other

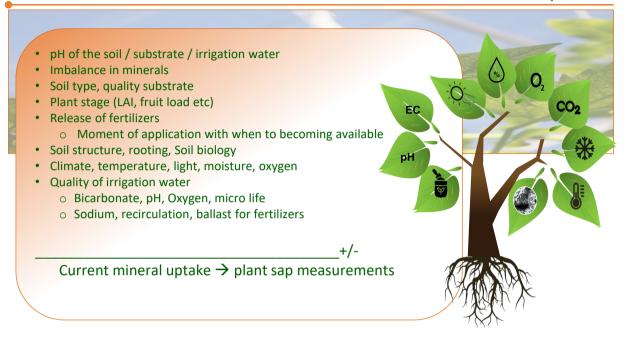
NovaCropControl

Rootstock influences nutrient uptake

www.novacropcontrol.nl



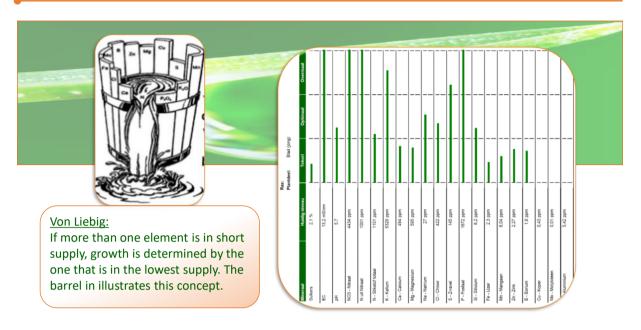
Subjects NovaCropControl Session 1: Nutrient balance and Factors that Mobility of Why Plant sap the interactions influence mineral elements Measurements? in the plant uptake Session 2: Nutrition and Research on 1111. Interpreting Using analyses bemesting-online plant health plant health


81

Antagonistic interactions

Factors that influence the mineral uptake

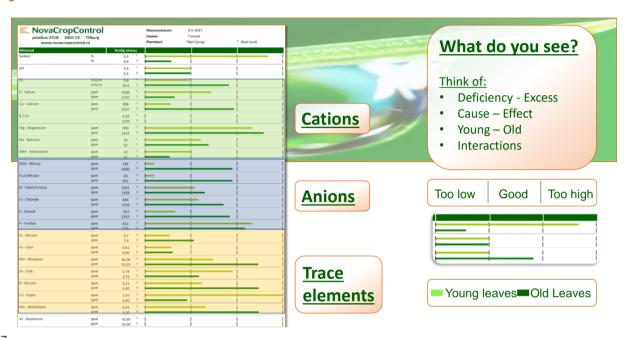
NovaCropControl



83

Interpretation Analysis

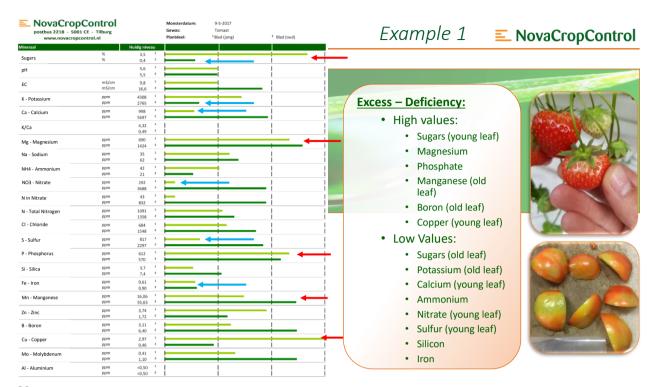
NovaCropControl


85

Interpretation Analysis

postbus 2218 - 5 www.novacro			Monsterdatum: Gewas: Plantdeel:	9-5-2017 Tomaat ³ Blad (jong)	² Blad (oud)		
Aineraal uikers	% %	Huidig niveau 3,5 ¹ 0,4 ² 5,6 ¹				Sugars,	• Sugars, EC, pH
c	mS/cm mS/cm	5,5 2 9,8 1 16,6 2			_	EC, pH	
- Kalium	ppm ppm	4308 ¹ 2765 ²			_		
a - Calcium	ppm ppm	998 ¹ 5697 ²			i i		
/Ca		4,32 ¹ 0,49 ²					Potassium, Calcium, K/Ca,
g - Magnesium	ppm ppm	690 ¹ 1424 ²					
a - Natrium	ppm ppm	35 ¹ 62 ²				Cations	Magnesium, Sodium, Ammonium
H4 - Ammonium	ppm ppm	42 ¹ 21 ²	<u> </u>				
03 - Nitraat	ppm ppm	192 ¹ 3688 ²	—		<u> </u>		
uit Nitraat	ppm ppm	43 ¹ 832 ²	<u> </u>		_		
- Stikstof totaal	ppm ppm	1091 ¹ 1358 ²					 Nitrate, N in Nitrate, Total Nitrogen,
- Zwavel	ppm ppm	684 ¹ 1548 ² 817 ¹			-	Anione	
- Fosfaat	ppm ppm ppm	2297 2 612 ¹				Anions	Chloride, Sulfur, Phosphorus
- Silcium	ppm	570 Z					
- Uzer	ppm	7,4 2					
n - Mangaan	ppm ppm	0,90 2					
a - Zink	ppm ppm	55,63 ² 3,74 ¹				-	 Silica, Iron, Manganese, Zinc, Boron,
Borium	ppm ppm	1,72 ² 3,11 ¹				Trace	Copper, Molybdenum, Aluminium
- Koper	ppm ppm	6,40 ² 2,97 ¹				Elements	copper, morybaenam, Alaminam
- Molybdeen	ppm ppm	0,46 2					
Aluminium	ppm ppm ppm	1,10 ² <0,50 ¹ <0,50 ²	1				

Interpretation Analysis


NovaCropControl

87

Interpretation Analysis

NovaCropCo postbus 2218 - 5001 CE www.novacropcontee	Tilburg		Monsterdatum: Gewas: Plantdeel:	9-5-2017 Tomaat ¹ Blad (jong)	2 Blad (oud)	
Mineraal Suikers pH		Huidig niveau 3,5 ¹ 0,4 ² 5,6 ¹ 5,5 ² 9,8 ¹				Which elements are high, which low (deficiency/excess)
K - Kalium	mS/cm ppm ppm	16,6 2 4308 1 2765 2				(denciency/excess)
Ca - Cakium K / Ca	ppm ppm	998 1 5697 2 4,32 1 0,49 2				
Mg - Magnesium Na - Natrium	ppm ppm ppm	690 1 1424 2 35 1 62 2				Nutrient uptake difference between
NH4 - Ammoniam NO3 - Nitraat	ppm ppm	42 1 21 2 192 1	-			young and old leaves (Mobility)
N ult Nitraat	ppm ppm ppm	3688 2 43 1 832 2 1091 1	_			
CI - Chloride	ppm ppm ppm	1358 2 684 1 1548 2		-	-	
S - Zwavel P - Fosfaat	ppm ppm ppm ppm	817 2297 2 612 1 570 2				Interactions between cations and anions
Si - Silicium Fe - Uzer	ppm ppm ppm	3,7 ¹ 7,4 ² 0,61 ¹ 0,90 ²		+		
Mn - Mangaan Zn - Zink	ppm ppm	16,06 ¹ 55,63 ² 3,74 ¹				
B - Borium	ppm ppm ppm	1,72 × 3,11 × 6,40 ×				What influences the mineral uptake
Cu - Koper Mo - Molybdeen	ppm ppm	2,97 0,46 0.41		-		(climate, EC, pH, soil life, etc.)
Al - Aluminium	ppm ppm ppm	1,10 ×				

89

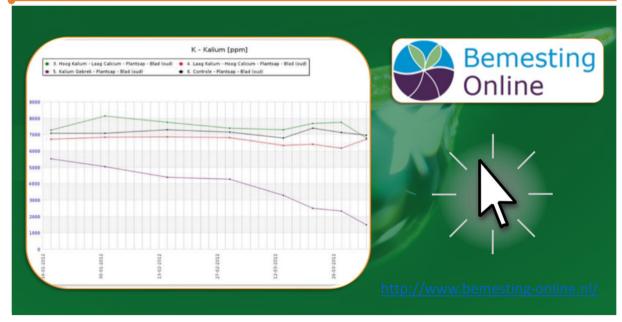
Water analyses: Example 1

Historie Gietwa	iter	(EC gecor	rigeerd)					Hoo	fdelement	ten (mm	ol/I)							Spoorel	ementen	(µmol/l)		Spoorelementen (µmol/l)					
Monsterdatum	Monsternummer	EC m5/cm	рH	NH4	K	Na	Ca	K/Ca	Mg	Si	NO3	CI	S	HCO3	P	Fe	Mn	Zn	В	Cu	Мо	A					
1-5-2017		3,2	6,1	0,41	8,4	1,3	6,3	1,34	3,2	<0,1	15,3	4,6	4,8	0,1	1,06	55,6	12,6	47,2	136,0	2,8	2,9	<					
24-4-2017		3,1	5,9	0,11	6,3	1,5	8,6	0,73	4,7	0,1	12,1	6,0	7,5	0,2	0,99	54,4	14,1	67,9	185,5	4,6	4,7	<					
17-4-2017		3,2	6,0	<0,10	6,6	1,6	8,3	0,80	5,2	<0,1	11,0	6,4	7,8	0,2	1,08	62,4	13,5	76,9	210,2	5,0	3,7						
10-4-2017		3,4	5,1	<0,10	6,2	1,2	7,5	0,83	4,0	<0,1	11,2	5,9	6,5	0,2	1,47	50,2	14,5	49,8	150,1	4,0	3,7						
3-4-2017		3,4	6,0	<0,10	6,0	1,2	7,7	0,79	4,6	<0,1	10,2	6,4	7,7	0,2	1,74	39,5	10,6	57,6	141,5	4,4	3,6						
27-3-2017		3,4	5,8	<0,10	7,9	1,0	7,1	1,12	4,2	<0,1	11,3	6,0	6,5	0,2	1,47	47,0	15,1	36,7	117,9	3,7	2,9						
20-3-2017		3,4	5,6	<0,10	6,9	0,8	7,1	0,96	3,9	<0,1	12,3	6,2	6,0	0,1	1,89	43,7	12,9	34,3	108,3	3,6	2,6						
			6											14	4												
listorie Drainw	vater	(EC gecor	rigeerd)					Hool	fdelement	ten (mm	ol/l)			1.	4			Spoorel	ementen	(µmol/l)							
	/ater Monsternummer	(EC gecor		NH4	ĸ	Na	Ca				ol/I) NO3	a	s	НСОЗ	- P	Fe	Mn	· ·	ementen B	(µmol/l) Cu	Мо						
	Monsternummer	EC m5/cm	rigeerd) pH	NH4	K	Na	Ca	Hool K/Ca	fdelemen Mg	ten (mm Si		d	5	НСОЗ	P	Fe	Mn	Spoorel Zn			Мо						
				NH4	K	Na	Ca		Mg			d	s	нсоз	P	Fe	Mn	· ·			Мо						
	Monsternummer	EC m5/cm		NH4 <0,10	к 2,9	Na 3,1	Ca	K/Ca	Mg	Si		CI	S 	HCO3	P	Fe 56,7	Mn	· ·		Cu	Мо 						
Monsterdatum	Monsternummer	EC m5/cm 3,7	рH					K/Ca	Mg	Si	NO3							Zn	В	Cu							
Monsterdatum 1-5-2017	Monsternummer	EC m5/cm 3,7 3,9	рН 7,2	<0,10	2,9	3,1		K/Ca 0,24	Mg 	Si 0,2	NO3		12,3		0,35	56,7	1,1	Zn 134,9	B 341,6	Cu 7,2							
1-5-2017 24-4-2017	Monsternummer	EC m5/cm 3,7 3,9 3,8	рН 7,2 7,5	<0,10 <0,10	2,9 1,5	3,1 3,0	12,1 14,6	K/Ca 0,24 0,10	Mg 8,3 9,7	Si 0,2 0,2	NO3 11,3 7,4	 10,2 10,9	12,3 16,0	1,1 1,8	0,35	56,7 66,8	1,1 1,0	Zn 134,9 166,6	B 341,6 393,9	Cu 7,2 9,1	7,9 10,4	· · · · · · · · · · · · · · · · · · ·					
Monsterdatum 1-5-2017 24-4-2017 17-4-2017	Monsternummer	EC m5/cm 3,7 3,9 3,8 3,9	рН 7,2 7,5 7,4	<0,10 <0,10 <0,10	2,9 1,5 2,0	3,1 3,0 3,1	12,1 14,6 13,5	K/Ca 0,24 0,10 0,15	Mg 8,3 9,7 10,3	Si 0,2 0,2 0,2	NO3 11,3 7,4 6,9	10,2 10,9 11,1	12,3 16,0 15,4	1,1 1,8 1,6	0,35 0,25 0,29	56,7 66,8 60,4	1,1 1,0 0,6	Z n 134,9 166,6 165,5	B 341,6 393,9 405,2	Cu 7,2 9,1 9,3	7,9 10,4 8,2						
Monsterdatum 1-5-2017 24-4-2017 17-4-2017 10-4-2017	Monsternummer	EC m5/cm 3,7 3,9 3,8 3,9 4,4	рН 7,2 7,5 7,4 7,3	<0,10 <0,10 <0,10 <0,10	2,9 1,5 2,0 2,3	3,1 3,0 3,1 2,4	12,1 14,6 13,5 11,1	K/Ca 0,24 0,10 0,15 0,21	Mg 8,3 9,7 10,3 7,6	Si 0,2 0,2 0,2 0,2	NO3 11,3 7,4 6,9 5,0	10,2 10,9 11,1 10,2	12,3 16,0 15,4 12,9	1,1 1,8 1,6 2,2	0,35 0,25 0,29 0,17	56,7 66,8 60,4 35,2	1,1 1,0 0,6 0,4	Zn 134,9 166,6 165,5 111,6	B 341,6 393,9 405,2 275,9	Cu 7,2 9,1 9,3 6,5	7,9 10,4 8,2 6,9						
Monsterdatum 1-5-2017 24-4-2017 17-4-2017 10-4-2017 3-4-2017	Monsternummer	EC ms/em 3,7 3,9 3,8 3,9 4,4 4,0	рН 7,2 7,5 7,4 7,3 7,4	<0,10 <0,10 <0,10 <0,10 <0,10	2,9 1,5 2,0 2,3 4,4	3,1 3,0 3,1 2,4 2,2	12,1 14,6 13,5 11,1 11,9	K/Ca 0,24 0,10 0,15 0,21 0,37	Mg 8,3 9,7 10,3 7,6 8,6	Si 0,2 0,2 0,2 0,2 0,2 <0,1	NO3	10,2 10,9 11,1 10,2 10,9	12,3 16,0 15,4 12,9 14,8	1,1 1,8 1,6 2,2 2,0	0,35 0,25 0,29 0,17 0,27	56,7 66,8 60,4 35,2 35,5	1,1 1,0 0,6 0,4 0,5	Zn 134,9 166,6 165,5 111,6 125,3	B 341,6 393,9 405,2 275,9 264,1	Cu 7,2 9,1 9,3 6,5 7,7	7,9 10,4 8,2 6,9 6,7						
Monsterdatum 1-5-2017 24-4-2017 17-4-2017 10-4-2017 3-4-2017 27-3-2017	Monsternummer	EC m3/cm 3,7 3,9 3,8 3,9 4,4 4,0 4,5	pH 7,2 7,5 7,4 7,3 7,4 7,9	<0,10 <0,10 <0,10 <0,10 <0,10 <0,10	2,9 1,5 2,0 2,3 4,4 3,5	3,1 3,0 3,1 2,4 2,2 2,5	12,1 14,6 13,5 11,1 11,9 12,6	K/Ca 0,24 0,10 0,15 0,21 0,37 0,28	Mg 8,3 9,7 10,3 7,6 8,6 8,7	Si 0,2 0,2 0,2 0,2 0,2 <0,1 0,2	NO3 11,3 7,4 6,9 5,0 6,1 3,5	10,2 10,9 11,1 10,2 10,9 10,7	12,3 16,0 15,4 12,9 14,8 15,1	1,1 1,8 1,6 2,2 2,0 4,1	0,35 0,25 0,29 0,17 0,27 0,10	56,7 66,8 60,4 35,2 35,5 59,5	1,1 1,0 0,6 0,4 0,5 9,4	Zn 134,9 166,6 165,5 111,6 125,3 99,5	B 341,6 393,9 405,2 275,9 264,1 279,3	Cu 7,2 9,1 9,3 6,5 7,7 7,2	7,9 10,4 8,2 6,9 6,7 6,8						

Interpretation Analysis: Example 2

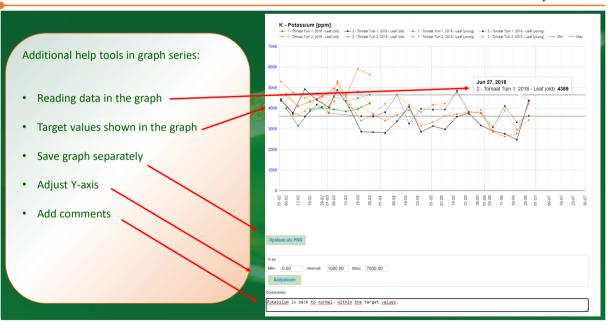
NovaCropControl

EC


Interpretation Analysis: Example 2

dig niv Sugars 6,2 6,1 pН mS/cm mS/cm 15,4 13,3 ppm ppm 9357 6846 K - Potassium ppm ppm 4508 2617 Ca - Calcium 2,08 2,62 K/Ca Mg - Magnesium ppm ppm 487 51 Na - Sodium ppm ppm 10 12 ppm ppm 84 79 NH4 - Ammonium NO3 - Nitrate ppm ppm 607 1183 N in Nitrate ppm ppm 137 267 N - Total Nitrogen ppm ppm 925 901 Cl - Chloride ppm ppm 1286 1040 152 85 135 81 S - Sulfur ppm ppm Excess – Deficiency: P - Phosphorus ppm ppm 44,2 21,7 5,18 5,75 ppm ppm Si - Silica Older leaves • Fe - Iron ppm ppm Cations not in balance ppm ppm ppm • 9,79 7,17 0,48 0,41 2,05 2,16 0,42 0,24 0,24 0,24 0,24 0,31 0,16 0,87 Mn - Manganese Zn - Zinc Potassium and Calcium very high. • ppm ppm B - Boron 2 • Magnesium uptake too low causing the ppm ppm Cu - Copper ŝ ppm ppm deficiency. Mo - Molybdenum ppm ppm 1 Al - Aluminium

Follow data online on www.bemesting-online.nl

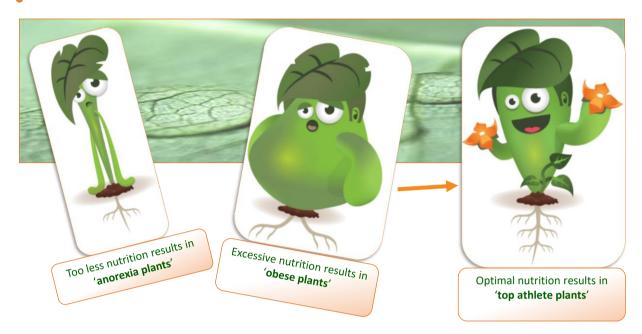


The use of www.bemesting-online.nl

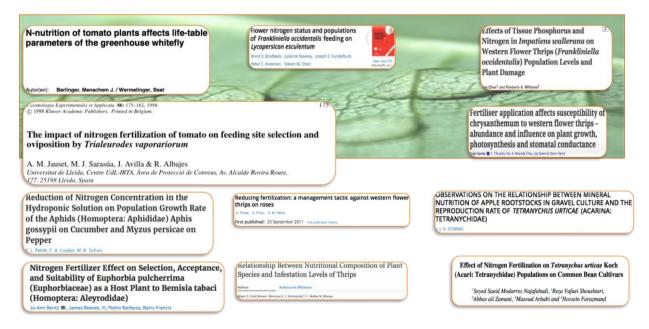
NovaCropControl

Bemesting Online	Interfands • Help	• By measuring frequently, the
Welkom bij Bernesting Online Betrukkersear Infogdemobedryf.nl Infoggen Bernesting Online Grafieken intijd Periode bakijken: Efer • Schai: Week-Weien • Genetrern * Begiedaum: 01052018 Enddaum: 01102018 Name:	Weikern, Infogdemobedtijf ni [Uitlopgen]	 plantsap/water measurements can be viewed over time Becomes a steering wheel. Clear overview of Irrigation, drain, cleb water and observation via plant
Kie: Neuw • Nam: Tomatenteet 2018 Ore racht wen bala	Opsian Verwijdene Pagina-instelling: Porteet Alle Confistent Equations	 Different companies Multi-year course Export to PDF or Excel
Bedrijven - Locaties - Tee	ten ♥	Voorbeeld
🗷 Tuin 2	Ø Tormaat luin 1 2018 Ø Tormaat luin 2 2017 Ø Tormaat luin 2 2018	

95



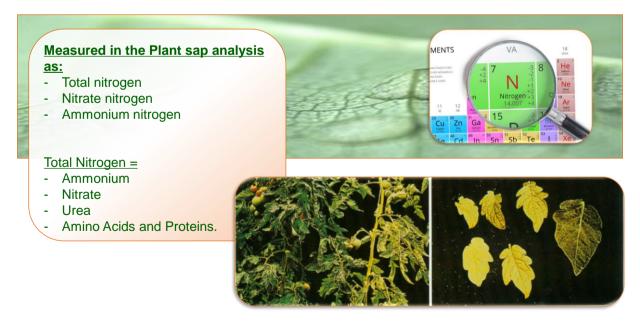
Do you feed your plants as athletes?

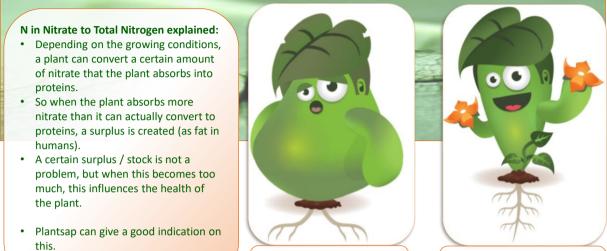


Do you feed your plants as athletes?

NovaCropControl

Scientific studies: Good fertilization = good plant health **E** NovaCropControl


Plant health vs Nutrient uptake


101

Nitrogen important factor in plant health

N in Nitrate to total Nitrogen

NovaCropControl

Excessive nutrition results in 'obese plants' Optimal nutrition results in 'top athlete plants'

E NovaCropControl

103

Oversupply Nitrate

For example (plantsap):

 Nitrate:
 1500 ppm

 N out of Nitrate:
 339 (=1500 / 4,43)

 Total Nitrogen:
 670 ppm

Ratio of Nitrate out of total N: 339 / 670 = **51%**

Susceptibility:

- Tomato → 50% NO3 of total N
- Pepper → 60% NO3 of total N

But every crop has its own %! With low Nitrate levels the amount of total Nitrogen also gives an indication.

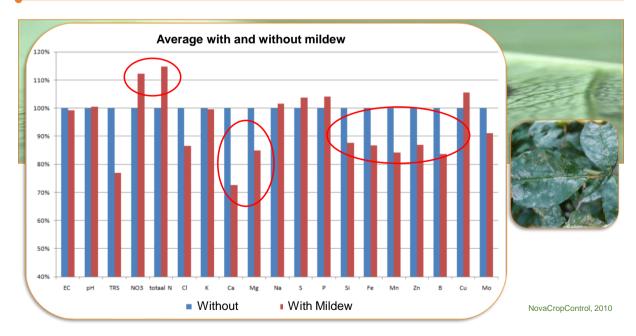
- Oversupply (nitrates) could result in increased susceptibility for diseases
- Which amount of nitrate is part of total Nitrogen
 (degree of conversion)

Mildew vs Nitrate: Cucumber

Mildew Cucumber

Nitrate Accumulation vs Mildew: Practice comparison: Plantsap measurements in Cucumber leafs

3 objects:


- Affected (Erysiphe sp.)
- Not affected
- Tolerant variety

Object	% Sugars	N out of Nitrate (ppm)	Total N (ppm)	Part of Nitrate in Total N	Manganese (ppm)
Affected	0,4	696	1271	55%	1,8
Not Affected	0,5	552	1168	47%	2,2
Tolerant variety	1,0	380	1266	30%	4,3

105

Mildew vs Nitrate: Roses

Plant research in Kohlrabi

NovaCropControl

NovaCropControl

Mineral deficiency test 2017:

Tested on Kohlrabi (Lech):

Cocos and yellow sand

EC

mS/cm

2,8

Potassium

mmol/l

7,5

5

3,5

Nitrate

mmol/l

4

2

1

Phosphorus

mmol/l

2,28

1

0,5

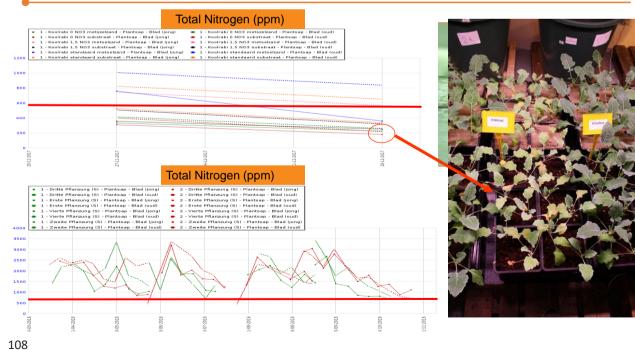
Low nitrate

Standard

Nitrate -

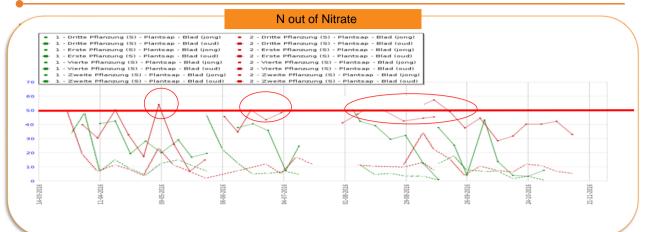
Nitrate -

Potassium -Potassium -


Phosphorus -

Phosphorus -

- Low phosphate
- Low potassium


107

Plant research in Kohlrabi

Plant research in Kohlrabi

NovaCropControl

Kohlrabi field:

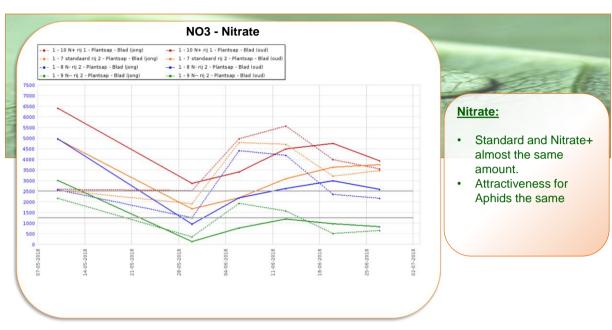
 In the case of Kohlrabi over 50% makes the plant more susceptible to pests and diseases.

109

Phytopthora vs. Copper

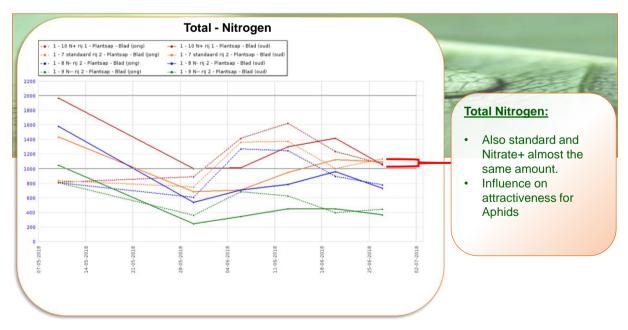
NovaCropControl

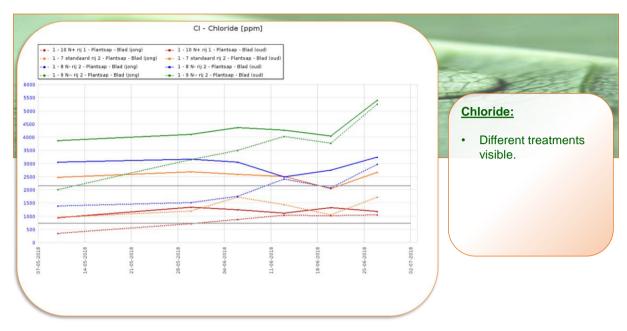
Fertilization test:


- Research into new parameters with regard to plant resistance
- Steering on low nitrogen to improve plant health
- Side effects on taste
- Test in tunnel with different Nitrate / Chloride ratios

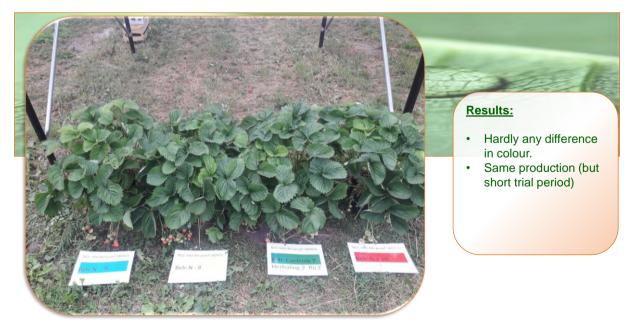
111

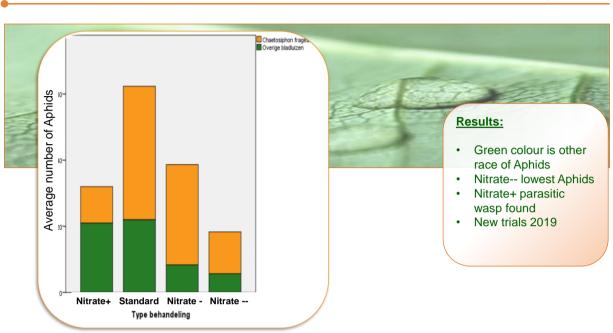
Fertilization test Nitrate / Chloride 2018


		<u>A</u>	
	Treatment	Nitrate	Chloride
	Nitrate +	11,2 mmol/l	0 mmol/l
 <u>Nitrogen test</u> Correction anions with Chloride 	Standard	9 mmol/l	2,2 mmol/l
 Aphid test (Nitrate influence on reproduction) 	Nitrate -	6,8 mmol/l	4,4 mmol/l
- Placed cage around plants	Nitrate	4,6 mmol/l	6,6 mmol/l


113

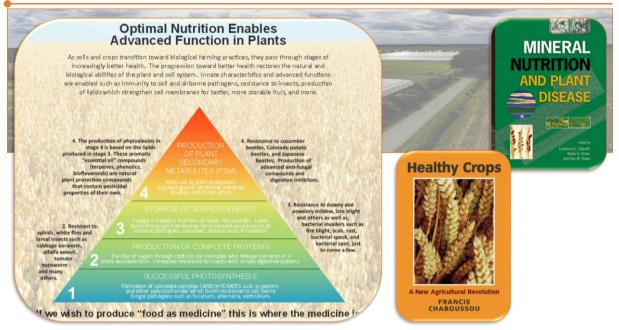
Fertilization test Nitrate / Chloride 2018



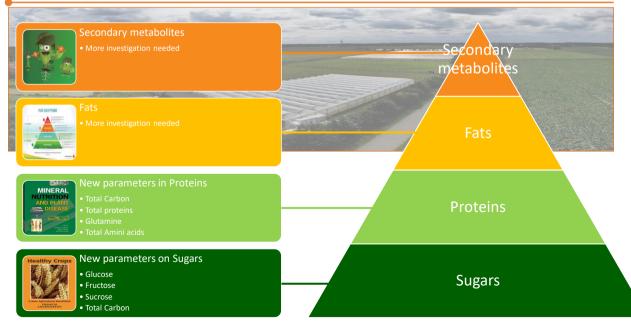

NovaCropControl

115

Fertilization test Nitrate / Chloride 2018



117


Literature research

NovaCropControl

119

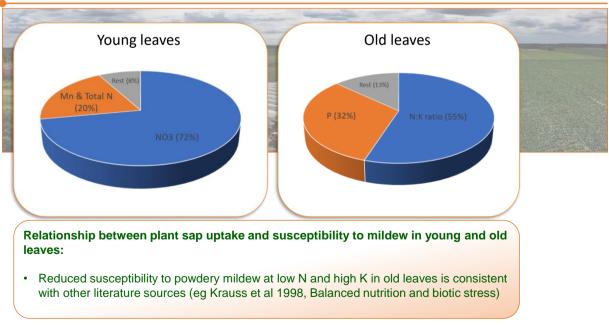
Goal: Measuring plant resilience

Carbohydrates

NovaCropControl

- Glucose, fructose, sucrose are simple carbohydrates
- A lot of simple carbohydrates will make the plant susceptible for diseases
- Lignin, pectin, cellulose and starch are complex carbohydrates
- A lot of complex carbohydrates will make the plant resilience to diseases

121


R&D developments Plant health 2020

Test with powdery mildew in tomatoes (2020) **NovaCropControl** After 10-14 days: white spots with spores (> 10,000 / leaf!) Insensitive variety: Sensitive variety: First relationships found between nutrients in plant sap and powdery mildew (validation ongoing). 1. Trial with 7 tomato 2. Infection with mildew in Follow-up trial in tunnel greenhouse cultivars to collect plant petri dish test (equal with specific Nutrition schedules (NO3 sap (standard feeding temperature and humidity) & Mn). schedule)

123

Test with powdery mildew in tomatoes (2020)

www.novacropcontrol.nl

